Gemini 开发者 API

要访问 Gemini Pro 和 Flash 模型,我们建议 Android 开发者使用 Firebase AI Logic 来调用 Gemini 开发者 API。它允许您无需信用卡即可开始使用,并提供慷慨的免费用量。一旦您通过少量用户验证了您的集成,就可以切换到付费方案以进行扩展。

Illustration of an Android App that contains a Firebase Android
  SDK. An arrow points from the SDK to Firebase within a Cloud environment. From
  Firebase, another arrow points to Gemini Developer API, which is connected to
  Gemini Pro & Flash, also within the Cloud.
图 1. 用于访问 Gemini 开发者 API 的 Firebase AI Logic 集成架构。

开始使用

在您直接从应用中与 Gemini API 交互之前,您需要先完成一些事项,包括熟悉提示以及设置 Firebase 和您的应用以使用 SDK。

尝试使用提示

Google AI Studio 是一个 IDE,您可以使用它来为您的应用用例原型设计和创建提示。

为您的用例创建合适的提示更像是一门艺术而非科学,这使得实验变得至关重要。您可以在 Firebase 文档中了解有关提示的更多信息。

一旦您对提示满意,请点击“<>”按钮以获取可添加到您代码中的代码片段。

设置 Firebase 项目并将您的应用连接到 Firebase

准备好从您的应用中调用 API 后,请按照 Firebase AI Logic 入门指南中“步骤 1”的说明设置 Firebase 和您的应用中的 SDK。

添加 Gradle 依赖项

将以下 Gradle 依赖项添加到您的应用模块中

Kotlin

dependencies {
  // ... other androidx dependencies

  // Import the BoM for the Firebase platform
  implementation(platform("com.google.firebase:firebase-bom:33.13.0"))

  // Add the dependency for the Firebase AI Logic library When using the BoM,
  // you don't specify versions in Firebase library dependencies
  implementation("com.google.firebase:firebase-ai")
}

Java

dependencies {
  // Import the BoM for the Firebase platform
  implementation(platform("com.google.firebase:firebase-bom:33.13.0"))

  // Add the dependency for the Firebase AI Logic library When using the BoM,
  // you don't specify versions in Firebase library dependencies
  implementation("com.google.firebase:firebase-ai")

  // Required for one-shot operations (to use `ListenableFuture` from Guava
  // Android)
  implementation("com.google.guava:guava:31.0.1-android")

  // Required for streaming operations (to use `Publisher` from Reactive
  // Streams)
  implementation("org.reactivestreams:reactive-streams:1.0.4")
}

初始化生成式模型

首先实例化一个 GenerativeModel 并指定模型名称

Kotlin

val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")

Java

GenerativeModel firebaseAI = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

GenerativeModelFutures model = GenerativeModelFutures.from(firebaseAI);

详细了解可与 Gemini 开发者 API 结合使用的可用模型。您还可以了解有关配置模型参数的更多信息。

从您的应用中与 Gemini 开发者 API 交互

现在您已设置好 Firebase 和您的应用以使用 SDK,您就可以从应用中与 Gemini 开发者 API 交互了。

生成文本

要生成文本响应,请使用您的提示调用 generateContent()

Kotlin

scope.launch {
  val response = model.generateContent("Write a story about a magic backpack.")
}

Java

Content prompt = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        [...]
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

从图片和其他媒体生成文本

您还可以从包含文本以及图片或其他媒体的提示中生成文本。当您调用 generateContent() 时,可以将媒体作为内联数据传递。

例如,要使用位图,请使用 image 内容类型

Kotlin

scope.launch {
  val response = model.generateContent(
    content {
      image(bitmap)
      text("what is the object in the picture?")
    }
  )
}

Java

Content content = new Content.Builder()
        .addImage(bitmap)
        .addText("what is the object in the picture?")
        .build();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        [...]
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

要传递音频文件,请使用 inlineData 内容类型

Kotlin

val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri).use { stream ->
    stream?.let {
        val bytes = stream.readBytes()

        val prompt = content {
            inlineData(bytes, "audio/mpeg")  // Specify the appropriate audio MIME type
            text("Transcribe this audio recording.")
        }

        val response = model.generateContent(prompt)
    }
}

Java

ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(audioUri)) {
    File audioFile = new File(new URI(audioUri.toString()));
    int audioSize = (int) audioFile.length();
    byte audioBytes = new byte[audioSize];
    if (stream != null) {
        stream.read(audioBytes, 0, audioBytes.length);
        stream.close();

        // Provide a prompt that includes audio specified earlier and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "audio/mpeg")  // Specify the appropriate audio MIME type
              .addText("Transcribe what's said in this audio recording.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid audio file", e);
}

要提供视频文件,请继续使用 inlineData 内容类型

Kotlin

val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    val prompt = content {
        inlineData(bytes, "video/mp4")  // Specify the appropriate video MIME type
        text("Describe the content of this video")
    }

    val response = model.generateContent(prompt)
  }
}

Java

ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes video specified earlier and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("Describe the content of this video")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

同样,您也可以传递 PDF (application/pdf) 和纯文本 (text/plain) 文档,将其各自的 MIME 类型作为参数传递。

多轮聊天

您还可以支持多轮对话。使用 startChat() 函数初始化聊天。您可以选择为模型提供消息历史记录。然后调用 sendMessage() 函数发送聊天消息。

Kotlin

val chat = model.startChat(
    history = listOf(
        content(role = "user") { text("Hello, I have 2 dogs in my house.") },
        content(role = "model") { text("Great to meet you. What would you like to know?")   }
    )
)

scope.launch {
   val response = chat.sendMessage("How many paws are in my house?")
}

Java

Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");

Content message = messageBuilder.build();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

有关更多详细信息,请参阅 Firebase 文档

后续步骤